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ABSTRACT 
Traceability recovery is a tedious, error-prone, person-power 

intensive task, even if aided by automated traceability tools.  

Human analysts must vet candidate traceability links retrieved by 

such tools and must often go looking for links that such tools fail 

to locate as they build a traceability matrix.  This paper examines a 

research version of the traceability tool REquirements TRacing On 

target (RETRO) that logs analyst actions.  We examine the user 

logs in order to understand how analysts work on traceability 

recovery tasks. Such information is a pre-requisite to 

understanding how to better design traceability tools to best utilize 

analyst time while developing a high quality final traceability 

matrix. 

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications]: Tools. 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Traceability, Study of the Analyst, Logging, Effort. 

1. INTRODUCTION 
Traceability is defined as “the ability to describe and follow the life 

of a requirement, in both a forward and backward direction, e.g. 

from its origins, through its development and specification, to its 

subsequent deployment and use, and through periods of ongoing 

refinement and iteration in any of these phases” [8].  Traceability 

matrices (TMs) document traceability relationships between pairs 

of documents of the software engineering process. TMs are 

developed as part of a typical software engineering life cycle in 

order to support activities such as regression testing, change 

impact analysis, maintenance, and verification and validation.  In 

safety- and mission-critical development efforts, the TM often 

plays an important role in the “certification” of the system; to 

ensure, for example, that all safety requirements have been 

implemented. 

At present, traceability research faces an important dilemma. The 

traditional process of tracing throughout the software engineering 

life cycle, as well as the process of trace recovery used in 

verification and validation of software, is conducted by human 

analysts with minimal software support.  This requires significant 

analyst effort, and makes the process tedious and potentially error-

prone. Traceability matrices for mission- and safety-critical 

projects, however, must be certified by human analysts who bear 

the responsibility for validation of the constructed software.  The 

immediate implication of these observations is two-fold. On one 

hand, automation of the tracing processes is highly desired, as it 

has the potential of drastically decreasing the time it takes to 

perform these tasks. On the other hand, the process must directly 

involve human analysts to certify TMs. This has lead to two 

directions in traceability research: studying the automating 

techniques or methods and studying the analyst. 

Automation of the tracing process can be achieved by applying 

information retrieval (IR), data mining, and text mining techniques 

to the documents being traced. A number of studies in the past 

eight years examined the effectiveness of various automated 

techniques in tracing software engineering documents 

[1][12][2][14]. The study of human analysts working with 

automated tools, however, has only just commenced. Although 

anecdotal evidence [9][11] was presented five years ago indicating 

that human analysts working with tracing software do not  

necessarily improve the accuracy of candidate traces suggested by 

the software, systematic study of this topic started only recently.  In 

2010, Cuddeback et al. [5] undertook a study of 27 participants 

who were asked to validate an automatically generated candidate 

trace for a pair of textual documents (a trace is deemed candidate 

until it is vetted by a human) with the User Interface (UI) of 

RETRO [13]. The study confirmed what has been suspected for 

some time: analysts did not necessarily improve the accuracy of 

the candidate TM presented to them. While the study did show that 

the accuracy of the candidate TM had an effect on the accuracy of 

the TM submitted by the analysts, one of the most significant 

discoveries was that the best work was performed by analysts 

given the lowest accuracy candidate TMs . This left a number of 

questions to be investigated further. One of the important questions 

our research group has asked is “how do the analysts use tracing 

software when they are working on trace validation tasks?” 

To answer such questions, we modified our research tool 

REquirements TRacing On-target (RETRO) to include an event 

logger that allowed us to collect information about the actual 

actions performed by analysts when undertaking trace recovery 

and trace validation tasks. We conducted a follow-up study 

involving 13 participants at two locations and obtained 13 logs 

detailing the analyst‟s work. In this paper, we present our initial 

analysis of the logs and our observations. 

The paper is organized as follows.  In Section 2, we provide some 

background on requirements tracing and the role of human 
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analysts. Section 3 describes the experiment we conducted, the 

logging tool, and the information captured.  Section 4 describes the 

results of our study and presents our analysis. Section 5 discusses 

the challenges and questions that the proposed research will 

address in the future. 

2. REQUIREMENTS TRACING AND THE 

ROLE OF HUMAN ANALYSTS 
Research has shown that automated traceability techniques retrieve 

traceability links faster than manual techniques [1][10]. Typically, 

the accuracy of a traceability matrix is measured using recall: the 

percent of true links that were retrieved, precision: the percent of 

retrieved links that were true, and the f-measure, the harmonic 

mean of recall and precision. Most studies over the past eight years 

indicated that automated techniques are capable of retrieving most 

of the true traceability links, and thus, have high recall 

[1][12][2][14]. However, the recall comes at the cost of also 

generating many false positives leading to relatively low precision.  

An automated method for trace recovery takes as input a pair of 

textual documents from the software engineering process: a source 

document and a target document. Both documents are split into 

individual elements. For each element in the source document, the 

trace recovery task determines which elements in the target 

document are linked to it. Information retrieval- or text mining-

based automated methods study the contents of the elements in the 

two documents and provide a relevance estimate for each pair of 

elements. 

The key reason for studying automated methods for tracing is to 

replace menial analyst effort. In some settings where tracing 

occurs, e.g., post-deployment activities such as reverse 

engineering, fully automated tracing is a feasible alternative to the 

manual tracing procedures of today. However, trace recovery and 

trace validation tasks for mission- or safety-critical projects must 

include a human analyst who validates and updates, as necessary, 

any automatically generated traces. In such settings, automated 

tracing tools are still appropriate, as they can “cover more ground” 

much faster and present a decent candidate trace to an analyst in a 

matter of minutes. But it is the accuracy of the final TM, delivered 

and certified by the analyst that serves as the final judgment of 

success or failure of the tracing process. 

Figure 1 depicts the results from the 2010 study [5] in the 

precision-recall space. Participants received candidate TMs with 

different accuracies. Each participant's performance is represented 

by a vector with the tail indicating the accuracy of the initial 

(assigned) TM and the head (arrow) indicating the accuracy of the 

submitted TM. The results of the study confirmed initial 

observations: human analysts that get more accurate candidate 

TMs do not always produce more accurate final TMs. In fact, one 

of the most important observations from the study was that the 

analysts who were provided the least accurate candidate TMs were 

the only ones who consistently and significantly improved the 

accuracy of the TM while performing the trace validation task. 

In the absence of a human analyst, recall and precision provide a 

clear way of determining which automated method is better: 

methods that lead to higher accuracy for automatically generated 

TMs.  However, the study described above makes it clear that this 

may not be the right way of determining the best automated tracing 

method to be used to generate candidate TMs for analyst 

validation.  This creates a real challenge for the traceability 

community: without understanding how analysts work with 

automated tracing software, it is impossible to successfully 

automate the tracing process. 

 

Figure 1.  Cuddeback et al. study results 

3. EXPERIMENT DESIGN 
To better understand the work of the analysts with tracing 

software, we conducted an experimental study that is outlined 

below. 

3.1 Overview 
Our study was conducted in two upper-division Software 

Engineering classes: one at the University of Kentucky and one at 

Cal Poly. The participants of the study were senior and graduate 

students majoring in Computer Science and Software Engineering.  

Prior to the study, a pre-survey was given to gauge each 

participant's level of software engineering and tracing expertise, as 

well as their confidence in their ability to perform tracing.  

Participants were given access to a special-purpose requirements 

tracing tool and a small training example in order to familiarize 

themselves with the tool. Tichy [15] observes that appropriately 

trained students are adequate for determining trends. In the study, 

the participants used a version of the tool enhanced with a logging 

mechanism to validate a candidate TM, modifying the TM as 

needed: removing false links or discovering true links outside of 

the candidate TM. Participants submitted the final TM and the user 

activity log at the end of the study. A post-study survey asked 

questions about the participants' experience with the tracing task, 

the tracing software, and their self-assessment on how well-

prepared they were.  

3.2 Dataset 
The dataset for the study was constructed from the documentation 

for a BlueJ plugin Java code formatter named ChangeStyle. It was 

chosen because (a) the domain is easily understood by study 

participants, and (b) its size makes trace validation tasks 

achievable in about one hour. The dataset contains 32 

requirements (source elements) and 17 system tests (target 

elements).  The research team generated and validated the golden 

standard TM containing 23 true links [3]. 



3.3 Software Tool 
For the experiment, we added analyst action logging functionality 

to a somewhat more user-friendly version of RETRO called 

RETRO.NET [6]. We used this tool to deliver pre-computed 

candidate TMs assigned to each participant. 

Figure 2 shows the UI of the tool.  The participant starts the task by 

logging in to the tool. Next, they are presented with the assigned 

candidate TM to trace. On the left side of the UI, the list of source 

elements and the text of the current source element are displayed. 

On the right side of the UI, the list of target elements and their text 

is shown. The participant evaluates each candidate link and 

renders a Link/Not a Link decision (initially all candidate links are 

labeled Default). The participant can also mark source elements as 

Satisfied/Partially Satisfied/Not Satisfied by target elements. The 

UI also allows a participant to perform simple keyword searches in 

both source and target elements, view all links, as well as perform 

a few other actions that were less relevant to the direct task of trace 

validation.  

 

Figure 2. RETRO.NET UI 

3.4 The Logger 
To understand the participant decision-making process, we could 

have asked them to record what they were thinking as they 

performed the task. In fact, Cuddeback et al. [5] collected a simple 

handwritten task log that allowed for some crude estimate of the 

participant effort. However, a more detailed manually generated 

task log would invariably affect the performance of the task, 

forcing the participant to switch between the tracing task and 

documenting their decision-making process.  Besides causing them 

to switch mental activities, this would also increase the amount of 

time required to perform the tracing task. 

An alternate way of getting this information is for the software tool 

to log participant actions during the task; this does not put any 

additional burden on the participant. The possible downside of this 

approach is that the research team analyzing the logs may 

misinterpret participant intent. Log analysis, however, can provide 

key insights into participant behavior that would otherwise be 

difficult to obtain without affecting the outcome of the task1. 

                                                                 

1  In any such experiment there is the possibility of 

impacted/biased results due to the Hawthorne effect.  This 

problem exists regardless of whether we log actions using the 

tool or ask the participants to document their mental process. 

The action logger tracks the following actions in a log file along 

with a time stamp for each action: 

1. User selects a source/target element in the TM. 

2. User views recommended links, views all links, or 

performs a keyword search (using the tabs at the bottom 

of the RETRO.NET UI window). 

3. User marks the observed source/target element pair as a 

(true) link or not a link. 

4. User marks a source element as satisfied, partially 

satisfied, or not satisfied by target elements. 

Figure 3 shows an example of actions performed during a 

particular task. We see from the log on row 1 that source element 

2.0.0 was selected by the participant and target element TC-11 

(row 2) was displayed at 12:52:03. The participant performed a 

keyword search for „documentation‟ seven seconds later and TC-

14 was displayed. Ten seconds later, the participant confirmed TC-

14 as a link to 2.0.0 (row 5). Logs are stored by the tool in comma-

separated value format. Log analysis includes running automated 

scripts to parse and process actions of interest for further analysis. 

12:52:03 2.0.0 Selected

12:52:03    TC-11 Selected

12:52:10 LowLevelID Keyword search: documentation

12:52:10    TC-14 Selected

12:52:20    TC-14 Marked Link

12:52:28 1.0.4 Selected

12:53:04    TC-11 Selected

12:53:17 LowLevelID By Recommendation selected.

12:53:45    TC-11 Selected

12:53:52    TC-11 Marked Link

12:54:01 LowLevelID All links selected.

12:54:02    TC-2 Selected

12:54:08    TC-13 Selected

12:55:13    TC-13 Marked Not A Link

12:55:15    TC-8 Selected

12:55:16    TC-12 Selected

12:55:17    TC-19 Selected

12:55:19    TC-5 Selected

12:55:37    TC-5 Marked Link  

Figure 3. Sample log output from RETRO.NET 

4. RESULTS AND DISCUSSION 
The experiment collected thirteen responses: eight responses from 

one of the universities and five responses from the other. 

Table 1 (at the end of this paper) summarizes the work of the study 

participants. It shows the accuracy of the candidate TMs presented 

to each participant, the accuracy of the final TM submitted by the 

participants, and the change in the TM accuracy. The accuracy is 

reported as recall, precision, and the f2-measure, the variant of the 

f-measure that values recall higher than precision2.  For example, 

                                                                 

2  For an extensive discussion of why f2-measure is used instead 

of f-measure, we refer the reader to earlier work [12]. In short, it 



UserA was presented with a TM that had 7 true links out of 35 

candidate links (30.4% recall, 20% precision, and 27.6% F2). At 

the end of the task, UserA submitted a TM that contained 15 true 

links out of 28 total links (65.2% recall, 53.6% precision, and 

62.5% F2), significantly improving the quality of the TM 

(difference of 34.8% recall, 33.6% precision, and 34.9% F2). The 

information in this table only tells us the beginning and the end of 

the user‟s story. As with Figure 1, which showed the overall 

change in the TM accuracy for participants in the earlier study [5], 

we graph the Table 1 data in Figure 4.  To better understand the 

“middle” of the user story for the 13 participants, we proceed as 

follows:  two user logs are examined in detail; all logs are analyzed 

and graphed for trends; and observations are made. 

 

Figure 4. Performance of the 13 study participants plotted in 

the precision-recall space 

4.1 Analyst Logs 
Delving into the log of an analyst‟s actions reveals a wealth of 

information about what happened during the task. For example, 

did the participant read all of the source elements before beginning 

to mark links for any source elements?  How much time was spent 

searching for links not in the candidate TM?  We illustrate what 

can be gleaned from individual logs by examining two sample user 

logs. 

UserM spent nearly four minutes on source element 1.9.5 early on 

in the task, then took about 30 seconds to skim through the 

remaining links before starting back at the top and marking links 

for about ten minutes. Then, about four minutes were spent 

reviewing the TM.  The last thirteen minutes of the task were spent 

performing keyword searches, which resulted in one dropped true 

link being added back into the TM. 

UserF had difficulty with the first few source elements, spending 

six minutes on them before continuing on, then going back and 

spending another two minutes to mark them. From there, marking 

the rest of the links took about eight minutes. Then two minutes 

were spent reviewing links.  

                                                                                                           

is known in the field of traceability that finding an omitted link is 

more difficult/time-consuming than rejecting a false positive (in 

fact, we actually directly observe similar behavior in this study). 

Hence, in determining the accuracy of a TM using a single 

measure, we value recall more. 

From these two logs, we start to see a pattern of difficulty with 

certain elements early on in the task, especially with source 

element 1.9.5. 

4.2 Log Analysis 
The examples above suggest that looking at the logs side-by-side 

may reveal some common trends. Log analysis revealed that 

participants spent an average of 32.5 minutes on the task (min. 18 

minutes, max. 48 minutes, std. dev. 9.4 minutes). Participants 

spent an average of 5.6 minutes to find and make a decision on the 

first true link in the TM (min. 2 minutes, max. 10 minutes, std. 

dev. 2.3 minutes). The discovery that participants took a significant 

amount of time to start marking links leads us to look further into 

the logs as to possible causes of such behavior. 

Log analysis also identified various strategies used by participants 

during the task, i.e., review recommended links most of the time; 

review all links most of the time; review recommended links first 

then review all links; review recommended links first then search 

for keywords; and alternate  between recommended links, keyword 

search, and all links. From log analysis and the final TM metrics, it 

appears that participants starting with high recall TMs tend to end 

up with slightly lower recall but increased precision, and 

participants starting with low recall TMs tend to end up with 

higher recall but lower precision TMs. Almost all participants 

confirmed TMs with at least 65% recall and at least 50% precision, 

which was acceptable for recall, and excellent for precision based 

on a classification of results by Hayes et al. [12]. 

In the user logs, we looked for factors that influence when a 

participant decides to search outside the recommended list for 

additional links (and whether these searches are fruitful). We 

noticed that certain links were dropped by most participants, 

leading us to analyze these links to identify factors that prevent 

participants from correctly identifying them. This analysis is still 

incomplete but will provide insight into the design of future 

traceability tools as well as provide advice for assisting software 

engineers to write more easily traceable documents. 

4.3 Log Depiction 
With the above insights in mind, we developed a number of ways 

to examine the user logs.  We depicted the thirteen logs and 

observed trends.  For example, we noticed that the thirteen 

participants exhibited four different patterns of behavior over the 

life-time of the task:  some found links early, some found links 

later, some found links early but then began to make significant 

mistakes, and some found correct links and made mistakes 

throughout the entire task. 

Figures 5, 6, and 7 depict the progress of the thirteen participants 

throughout the task using two sets of graphs. All participants start 

with an empty confirmed TM, hence, the starting accuracy is 0% 

recall and 0% precision and 0% F2-measure. Precision, recall, and 

F2-measure of the confirmed TM changes as correct and incorrect 

links are confirmed by each participant. One set of graphs plots the 

change in precision vs. recall.  A directional arrow (not drawn in 

the graphs) from the (red) circle to the last precision/recall point of 

the task corresponds to the graph shown in Figure 4. The other set 

of graphs plots the F2-measure of the confirmed TM over elapsed 

task time. F2-measure increases as participants make correct 

decisions (either confirm a true candidate link or discover an 

omitted true link) and decreases with each incorrect decision 

(confirmation or inclusion of a false positive). A rejected true link 

is also an incorrect action, but it does not alter the F2 value. 



Confirmed true links are marked as (green) circles, confirmed 

false positive links are marked as (red) Xs, and rejected true links 

are marked as (red) triangles. The graphs also contain a horizontal 

line signifying the F2-measure of the starting TM. 

Figure 5 plots the decisions made by the six participants who 

started slowly, sometimes with a number of incorrect decisions, 

but after a certain point stopped making mistakes. The 

observation that we made from reading two user logs in an earlier 

section is seen here: participants in this group have difficulty 

identifying correct links until after they have spent at least 20 

minutes on the task. Log analysis shows that half of the 

participants in this group were reviewing all links during the earlier 

part of the task, which could contribute to the delay in reaching the 

true links in the rest of the candidate TM. 

Figure 6 shows the progress of a group of four participants who 

were able to locate correct links earlier in the task and made very 

few mistakes throughout the task. Log analysis reveals that while 

most of these participants still had a „delay‟ in marking links; they 

were able to get past the hurdle quickly and then were able to go 

through links at a faster pace (compared to the participants shown 

in Figure 5). They made a few occasional mistakes: two 

participants made some mistakes at the very end, while the other 

two made a few individual mistakes in the first half of the task. 

Figure 5. Group of users finding links later 



Figure 7 presents the work of two participants who showed a 

period of “tiredness” during which they made many incorrect 

decisions in a row: at the very end of the task for one participant, 

in the middle of the task for the other participant. Log analysis 

reveals that one participant, UserB, had finished going through the 

recommended links in the TM and was adding additional links 

outside of the recommended list. About 40% of the false links 

added by the other participant came from links to a single source 

element, 1.9.5. The other participant, UserK, actually showed 

behavior similar to that of UserM and UserJ (Figure 6), but with a 

more pronounced bout of final mistakes.  

Figure 8 shows the work of UserI who interspersed correct 

decisions with occasional mistakes evenly throughout the task. The 

recommended TM for this participant was very small, which 

resulted in the participant searching outside the recommended TM 

almost the whole time. The graphs capture the change in the nature 

of UserI‟s activity after UserI “ran out” of candidate links to 

confirm. 

 

Figure 7. Participants making mistakes at certain points of the 

task 

 
Figure 8. Participant making mistakes evenly throughout 

It is clear from Figures 5 through 8 that all participants had an 

“upward hill” climb during which they were able to find correct 

links.  Log analysis reveals that the last 18 or so links from the 

bottom of the recommended list were marked quicker due to 

presumably a much clearer link between the source element and 

the target element.  The variability of the “climb” seems to be in 

how quickly the participant started to climb, and whether or not the 

participant made mistakes after the steep uphill climb (the two 

participants shown in Figure 7).  Further analysis of the individual 

links involved needs to be undertaken to see if the links that 

contributed to the initial delay in making good decisions are the 

same ones that contributed to the “drop off” of good work in some 

user sessions. 

In Figure 9, we present an additional depiction of the user log 

based on the effort spent on each true link. The real source and 

target element names in the figure have been altered since this 

dataset is still used in current studies. An automated script parses 

the log for actions related to true links and sums the time spent on 

each link. Each row of the table represents one of the 23 true links 

in the TM. Link 1.9.8->TC16 (Row 8), for example, was viewed 

by eight out of the 13 participants (black squares indicate that the 

participant did not even view the link). UserE spent 0.2 minutes on 

the true link before confirming it as a true link. On the other hand, 

UserF spent one minute on the same link and ended up rejecting 

the true link. UserG initially rejected the true link but changed their 

decision right away, which was most probably due to selecting the 

wrong option in the UI. Overall, around 25% of the decisions 

required the participant to spend at least 30 seconds or more, of 

which about 75% of the decisions were correct.  There were a 

number of participants who wavered in their decision on certain 

links in the TM, but there was no particular link that caused this 

Figure 6. Group of users finding links earlier 



behavior (this can be seen from the ^ and – links in the table). In 

most cases, participants spent additional time on these source 

elements, trying to decide whether the element pair was a link or 

not, perhaps due to some ambiguity in the description of the 

elements. Note that this reinforces a similar observation made by 

Egyed et al. [7] in a manual tracing experiment.  Focusing on these 

“ambiguous” links will allow us to address such issues in future 

traceability research. 

 

Link\User A B C D E F G H I J K L M

1.9.5->TC-11 8.8- 7.7 1.9 7.2! 5.6^ 4.6 4.2! 0.6! 0.0* 0.0* 1.4 0.1! 4.6

2.0.4->TC-3 0.1 0.2 0.4 3.9 0.1! 0.1 0.0* 1.6

2.0.2->TC-16 0.1 0.0* 0.1! 0.7 1.0! 0.3 0.2 0.0* 0.0* 1.3! 0.3! 0.8

1.9.9->TC-15 0.6 0.8 0.2 0.2 0.6 0.2! 0.2 0.2 4.2 0.2 0.7 1.0

1.9.4->TC-15 0.4 1.0! 0.6^ 0.4 0.7 0.0 0.0 0.1 0.7 0.6 0.2 0.8

1.9.2->TC-15 0.4 0.6 0.9 0.0* 0.3 1.1 0.0 0.3! 0.3 0.2 0.3 0.4 0.6

1.9.6->TC-11 0.3 0.6 0.2 0.5! 0.3 0.5 0.1 0.0* 0.9! 0.6! 0.7!

1.9.8->TC-16 0.2 1.0! 0.1^ 0.1 0.0 0.2 0.7 0.5

2.0.0->TC-14 0.2 0.2 0.3 0.3 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.3

1.0.4->TC-1 0.4 0.5 0.3 0.1* 0.1 0.3 0.1 0.4 0.3 0.4 0.4 0.2 0.3

1.6.0->TC-2 0.2 0.2 0.2 0.2* 0.2 0.3 0.1 0.3 0.3 0.3 0.3

1.6.5->TC-13 0.1 0.9 0.5 0.3 0.9 1.2 0.2 0.1 0.1 1.1 0.1 0.3 0.2

1.7.5->TC-8 0.1 0.2 0.1 0.6 0.1 0.4 0.1 0.2 0.1 0.2 0.2 0.2 0.1

1.8.5->TC-12 0.4 0.4 0.2 0.2 0.1 0.3 0.0* 0.3^ 0.2 0.2 0.4

1.5.5->TC-19 0.1 0.1 0.1 0.2 0.1* 0.0 0.1 0.1 0.3 0.3 0.5 0.4

1.8.7->TC-5 0.1 0.0 0.3 0.1 0.2 0.6 0.0 0.2 0.1 0.1 0.4 0.4 0.3

1.8.8->TC-5 0.2 0.0* 0.0* 0.0* 0.1^ 0.3! 0.0 0.2 0.2 0.3 0.5 0.1 0.7

1.0.5->TC-4 0.4 0.0* 0.2 0.3* 0.2 0.3 0.1 0.2 0.1 0.2 0.2 0.3 0.2

1.1.0->TC-6 0.2 3.0 0.1 0.3 0.1 0.2! 0.1 0.2 1.1! 0.6- 0.3 0.3 0.6^

2.2.2->TC-6 0.1 0.6-^ 0.1 0.3* 0.2 0.2 0.2 0.6 0.8 0.2 0.3 0.2 0.2

2.2.5->TC-7 0.1^ 1.1 0.4 0.5 0.1 0.3 0.1 0.1 0.4 0.3 0.3 0.2 0.2

1.8.0->TC-9 0.1* 0.3! 0.1 0.0* 0.9

1.7.0->TC-10 0.8 0.1 0.1* 0.1 0.1 0.1 0.3 0.3

! Dropped   ^ Dropped then added    - Added then dropped   * Viewed but no decision  

Figure 9. Participant effort spent on each true link 

4.4 Observations 
Based on the logs and the depiction of the logs, a number of 

observations can be made: 

The quality of the final TM is influenced by the quality of the 

initial TM.  In addition, analysts given low quality initial TMs tend 

to make the best decisions as they develop a final TM, validating 

the observations made in the Cuddeback et al. study [5]. We 

observe that certain links are very troublesome for the analysts 

while others tend to be very intuitive and easy to identify.  When 

an analyst spends very little time on a link they tend to make the 

correct decision. On difficult links, where the analyst struggles to 

make a decision, they frequently commit to the incorrect decision. 

One of the key observations that we discovered using the log 

depictions was that all analysts eventually settle into a pattern 

where they make multiple correct decisions in a row.  In several of 

the cases, this behavior lasts a short time, leading to a second 

“incorrect link” trend.  This “incorrect streak” often occurred when 

their confirmed TM recall approached the candidate TM recall.  

This seems to occur when analysts did not search outside their 

candidate TM to locate missing links; instead they focused on 

rejecting incorrect links.  In most cases these decisions were 

confirming links rather than rejecting incorrect links or searching 

for a missing link.  This adds additional support to the notion that 

validating a link is a simpler task than discovering a new link [12]. 

An additional key observation was that analysts tend to cause more 

errors after the nature of the task changed.  This can be seen when 

an analyst was presented with an initial TM with low recall and 

high precision: such candidate TMs are small. In our study, only 

two participants, UserB and UserI, were assigned such TMs.  Both 

participants quickly ran out of candidate links, appeared to 

conclude that more links needed to be discovered and, thus, were 

forced to search for omitted links. Both participants confirmed 

many false links past the point where the nature of their task 

changed.  While anecdotal at this point, if this is confirmed in later 

studies, we can utilize this information as an essential requirement 

for future tracing tools: the tool should not produce results with too 

few links for the analyst to validate, because the switch from link 

confirmation to link discovery causes errors of judgment to be 

introduced. 

A final key observation is that, for the most part, analysts were 

able to use RETRO.NET effectively with minimal training and 

guidance.  The analysts tended to use the tool as intended, explored 

a range of functionality available to them in the tool, and were able 

to successfully perform the tracing task. 

5. FUTURE DIRECTIONS 
Trace validation is a required undertaking for any mission- or 

safety-critical software project, requiring humans to make the final 

decision on links in the TM.  As the final TM is the determiner of a 

successful or unsuccessful trace validation task, traceability 

research must consider how human analysts work in concert with 

output from an automated tracing tool.  The discovery that humans 

given the lowest accuracy TMs made the best decisions when 

validating those TMs was a profound one, surely causing all 

traceability researchers to question our long quest for an automated 

tool that provides perfectly accurate candidate TMs. 

The problem of automating parts of the tracing process continues 

to be a topic for researchers to address. These new discoveries, 

however, strongly suggest that the original goal to produce 

automated candidate TMs of highest accuracy might not be the 

right one. With the research described in this paper, we are finally 

able to go beyond simple accuracy numbers and actually look 

inside the tracing process to see the causes for both positive and 

negative analyst behavior. This is not only the first step towards 

understanding the role of the analyst, but also the first step toward 

building the proper automated tools for this process. 

That being said, this study represents the first step in what should 

be a very long journey toward understanding user behavior.   

Specifically, we study the behavior of analysts to obtain key 

insights as to how to best focus their efforts and reinforce their 

confidence in the tool‟s ability to locate true links.  We are looking 

to conduct further experiments and analysis to determine what is 

keeping many users from reaching the “uphill climb,” good 

behavior pattern, quickly.  One idea we are looking to pursue is 

characterizing “hard links,” by doing so we could add a training 

session to begin the validation task.  Based on this information, we 

could add a training session to precede the user's validation task. 

By doing this, we can attempt to “teach” the user how to decide on 

difficult link pairs in an efficient manner. We could design the tool 

in such a way that the analyst is required to pass the “validation 

task” prior to proceeding to the real trace.  This idea is similar to 

our “educating the user” [4] concept proposed in a different paper 

submitted for publication. 



Additional log analysis also needs to be undertaken with the data 

from the 13 participants, as well as future studies.  We are trying to 

characterize links and determine what makes them simple or 

difficult for analysts to validate.  By performing this analysis, we 

look to find key “traits” that can make the tracing task easier and 

use this to design a tool that caters to this user behavior. 
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Table 1. Initial and Final TMs for each participant 

User

Begin 

true links

Begin 

total links Recall Precision F2

Final  

true links

Final 

total links Recall Precision F2

Diff 

Recall

Diff 

Precision Diff F2

UserA 7 35 30.4% 20.0% 27.6% 15 28 65.2% 53.6% 62.5% 34.8% 33.6% 34.9%

UserB 5 7 21.7% 71.4% 25.3% 15 27 65.2% 55.6% 63.0% 43.5% -15.9% 37.8%

UserC 13 26 56.5% 50.0% 55.1% 12 15 52.2% 80.0% 56.1% -4.3% 30.0% 1.0%

UserD 16 18 69.6% 88.9% 72.7% 12 33 52.2% 36.4% 48.0% -17.4% -52.5% -24.7%

UserE 21 42 91.3% 50.0% 78.4% 21 31 91.3% 67.7% 85.4% 0.0% 17.7% 7.0%

UserF 20 28 87.0% 71.4% 83.3% 14 15 60.9% 93.3% 65.4% -26.1% 21.9% -17.9%

UserG 19 29 82.6% 65.5% 78.5% 19 37 82.6% 51.4% 73.6% 0.0% -14.2% -4.9%

UserH 17 81 73.9% 21.0% 49.1% 18 35 78.3% 51.4% 70.9% 4.3% 30.4% 21.7%

UserI 6 7 26.1% 85.7% 30.3% 19 37 82.6% 51.4% 73.6% 56.5% -34.4% 43.3%

UserJ 17 20 73.9% 85.0% 75.9% 16 20 69.6% 80.0% 71.4% -4.3% -5.0% -4.5%

UserK 21 44 91.3% 47.7% 77.2% 20 40 87.0% 50.0% 75.8% -4.3% 2.3% -1.4%

UserL 20 42 87.0% 47.6% 74.6% 19 22 82.6% 86.4% 83.3% -4.3% 38.7% 8.7%

UserM 20 26 87.0% 76.9% 84.7% 20 24 87.0% 83.3% 86.2% 0.0% 6.4% 1.5%



  


